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ABSTRACT

Wc describe a neural network lcarning algorithm thatimplements differential learning in a genceralized backpropagation
framework. The algorithm regulates model complexity dating the lcarning procedure, generating the best low-complexity
approximation o the Bayes-optimal classifier allowed by the training sample. It learns to recognize handwritten digits of
the AT&T 11111 database.1.carning is done withlittle humanintervention. The algorithim generates a simple neural network
classificr from the benchmark partitioning of the database; the classifier has 650 total parameters and exhibits a testsample
crrotrate of 1 .3%.

1 INTRODUCTION

Recent advances in machine learning theory make it possible to generate pattern classifiers that arc consistently robust
cstimates of the Bayes-optimal (. e., minimum probability-of-ercor) classifier. Morcover, these advances guarantee good
approximations to the Bayes-optimal class ifier from models with the minimum functional complexity (e. g., the fewest
paramelers) necessary. These findings present a challenge: by whatincans canthe classifier consistently and autonomously
learn a robust, low-complexity approximation to the Bayes-optimal classifier? W describe a neuoral network learning
algorithm thatimplements differential lcarning in a generalized backpropagation framework. The algorithmregulates model
complexity during the learning procedure, generating the bestlow-complexity approximation to the Bayes-optimal classifier
allowed by thetraining sample. We focus on the algorithm’s ability to learnan optical character recognition task with little
humanintervention. It learns to recognize handwritten digits of the AT& T DR | database (provided by Dr.Isabelle Guyon).
The algorithm gencrates a simple neural network classifier from the benchmark pat litioning of the database; the classifier
has 650 total parameters and exhibits a test sample errotrate of 1.3%.

1.1Differential learning, efficiency, am] minimum complexity

As wc describedin this forumlast year [5], differentiallearning is discriminative; it secks to partition feature vector
space inthe Bayes-optimal fashion by optimizing a classification figure-of-met it (CEM) objective function|7, 4,3]. CH'M
objective functions arc bestdescribed as dilferentiable approximations to a counting function: they count the number of
correctclassifications (or, equivalently, the number of incorrect classifications) the classifier makes onthe training sample.
By optimizing such an objective function, differential learning ¢ cnerates robust approximations to the Bayes-optimal
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Figure I A diagrammatic view of an iterative, autonomous learning procedure.

classifier, generally requiring the smallest training sample size, and always requiring the least complex model necessary to
approximate the Bayes error rate with specified precision,

Whenthe classifier conslitules a “propel parametric model” of the data(4, ch’s. 3-4], classical probabilistic lcarning
strategies generate the best approximation to the Bayes-optimal classifier with the smallest training sample size necessary.
However, whenthe classifier constitutes an © ‘improper parametric model”” of the data [4, c¢h’s. 3-4], differential learning
generates the best approximation with the smallest training sample size necessary. The most efficient learning strategy
therefore depends o1z whetheror notthe classifictisapropermodel of the data, if indeed such a modelexists, Kolmogorov’s
theorem|1 2], can (arguably) be interpreted to mean that {inding the propet parametiic modelfora set of stochastic concepts
represented by a randomfeature vector is cither easy orhard - theieis little middle ground. Proceeding from this basis,
differentiallearning is likely to be the most efficient choice of strategy forscenatios in which a proper model is not obvious.

1.2 Automating the learning process

1Javing chosendifferentiallcarning, we arc still faced withselecting a mode] with whichto generate a classifier from our
training data. The minimum- complexity requirements of differential lcarning ensure that whatever our choice of liypothesis
cluss (i. e., themodel’s functional basis  linear, logistic lincar, orradial basis function, to name a few), we will need the
least complex modelin that class (e.g., the one with the fewes( paramcters) necessary for Bayesian discrimination. Much of
the work required to find thatminimum- complexity model can be done by the differential learning procedure itself. In that
spirit, wec deset ibc animplementation of differentiallearning that automates much of phases 2 and 3 of the learning and
class ificr evaluation procedures, as diagrammed in figure I Inscction 3 we describe how the algorithm regulates its own
learming rate, how itregulalcs mode] complexity through regularization and parameter climination, and how it regulates
the level of detail that can be learned from the training sample patierns, in section 4 we describe the statistical tests that
are generated by the algorithm, both during and after learning, and we describe how these tests are used 10 evaluate the
learned model. we conclude with a brief description of outongoing cfforts to build a truly autonomous differential learning
algotithm.
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Fig we 20 Porty digits randomly chosen fiom the AT&YT DB1database,

2 DATASET ANI) EXPERIMENTAL PROTOCOL

We begin with a description of the learning/pattern recognition task that we use to illustrate our algorithm. The AT&T
DB 1database contains 120[) handwrittendigits:ten examples of cachidigit, obtained from each of twelve differcut subjects
12]. Figure 2 illustrales 40 examples from the database. Hach example is a 256-pixel ( 16 x 16) binary image (i.c., pixels
are cither black or white). We compress cach exampleto a 64 pixel (8 x 8 , 5-levels/pixel) image: the value of each
compressed pixel is simply the average of its four constituentuncompressed pixels. Fvenafter compression, the examples
arc well-defined (o thehuman cyc and have uniform scale and oricntation (see[S]). Since its introduction, the database has
become abenchmark standard for evaluating learning procedures and neural network architectures in the optical character
recognition (OCR) domain. We in turn use the database to illustrate our learning algorithm.

Throughout Ibis paper we refer to a “‘benchmark split” of' the 13B1database. This term refers to the partitioning of
the database intlo a training, sample and test sample. Both samples contain 600" examiples. The benchmark training sample
compr ises the first five examples of’ ecach digit, obtained from cach of the twelve subjects. The benchmark test sample
comprisesthelastfive examples of cachdigit, obtained from each of the twelve subjects. This splitof the data has beenuscd
in a number of previous papers on the database; we use itso the reader can compare eurresults with previously published
ones. The experiments described in this papet arc partof a largersei ics of learning and recognition experiments using the
database. These experiments are described in|5]and [4, ¢h. §].

3 AUTOMATED LEARNING

As diagrammedin figure 1, the learning and model evaluation process begins with model sclection. In the current
implementation of our learning algorithm, the classifier model is sclected by the human operator, not by the algorithm
itself. Thatis, the choice of  hypothesis class (selection of functional basis andinterconnectiontopology) is determined by
the operator a priori. Learning begins afler the modelhas been selected.
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Iigure 3: A {ull-screen image of our learning algorithm and its main displays. Classifier state and learning controls are
annotated.

3.1Review of the basic learning algorithm

Figure 3 shows a full-screen image of the learning algorithm andits main displays. The main window on the right
contains all the controls and monitoring displays for lear ning, which we describe from top to bottom. The top display
shows the form of the synthetic CI'M ()hjccli\‘{c function, given the presentlevelof its learning confidence paramcter
(described below). The size of the training, test, and combined samples arc shownin aformto the right of the CEM
display: this form also shows the current number of training errors during learning, and the test and combined crror counts
during testing. ‘The choice of learning stralegy is determined by the choice of objective function used for learning. CHM,
mean-squared error (M SE), and the Kullback -1.cibler information distance [ 1 3] (a.k.a. cross entropy) objective functions
can be optimized. CEM implements differential learning; the other two error measures implement probabilistic Ic.silting.
The three displays to the left show the value of the objective function; the log , magnitude of the objective function’s
gradient on parameter space at the cutrent parameter vector value; the cosine of' the angle between the current gradient and
the previous iteration’s gt adient. This Tast metric is commonly used to show whether or not consecutive paramelter veetor
changes arc inthe same direction: if the cosine is necar unity, consecutive steps are in the same direction, and the scarch is
not oscillating in parameter space; if the cosine is neaizero, conseculive steps are orthogonal; if the cosine is negative the
scarchis oscillating in parameter space. A sequence of thelast 50 sets of these three statistics is shown. Controls for the
learning rate and momentum terms for gradient ascent/descent (€ and a respectively  sce (1) inappendix1) arc below




the optimization statistics. These controls are initialized to default values of .0land .85, but are generally con[ioiled by
the learning algorithmitsell during learning (see below). Below these are controls for two forms of regularization: weight
decay (e. g., 18))andweightsmoothing. Weight smoothing constrains parameters corresponding to local neighborhoods in
the retinotopic feature vector 1o have similar values. Our implementation of bothregularization procedures is detailed in [4,
appendix M |. Controls for sub-sampling the training sample during tact] learning cpoch are at the bottom of the control
panel. Controlsfor partitioning datainto training and testsamples are to the right of these.

‘The main window on theleft of the display shows the classifier state: we describe it from top to bottom. The top-left
formdescribes the input patternof the classifier. The middle rightform describes how the classifier has recognized the input
patiern, The far-right form shows recognition error rates for the ttaining sample during learning; during testing this form
alsoshows thetest and combined sample crrotrates. Whisker plots corresponding to these error rates are shown below this
form: these plots have 95% confidence bounds. The classificr’sinput pattern is shown in the large pixel map display on the
lowerleft. A pixel display 01 the classifier’s outputstate is shownimmediately above the input display. 1 lidden layer nodes
(motused in the classifier displayed) arc shown between the input and output displays. Mouse-clicking on any node pops
up a graphical display of allthcweights (i.e, paramclers) feeding intothatnode. The parameters connecting the classifier
iputto cach of the 10 oulpul nodes arc shown in the top-left of thescreen. The parameters corresponding tothe nodes that
represent “o”  “4” formthetoprow of thesc displays; paramelers corresponding to the nodes that represent “5” ©9”
form the bottom row. Abstract representations of cach digit are evident in these displays.

3.2 Automated learning functions
Fourprincipal control functions of learning need to be regulated

o lcarning ratc
omodel complexity (via regularization)

« lcaming confidence (i.e., thelevel of detail in the feature vector that can be learned from the  training sample: the
lower the confidence one requires of the classifier, the greatet the detail it can learn {from the training sample)

« lermination of learning

Wec have automated three of these fourcontrol functions in our algorithm. Regularizationis not controlled directly in this
implementation; the human operator must set the fevel 01 weight decay and/or weight smoothing prim to learning. We
discuss the avtomated controls in the following paragraphs.

3.21 1 carning rate automation

The learning rate and momentum terms for gradient ascent/dcsceN( are controlled manually by default. The leaining
rale can becontrolled automatically using one of two schemes: “auto-pilot” or modified Delta-Bar- Delta. Owing toits
supetiorit y, we describe only the latter controlmethod, which is a vatiation of the Delta-Bar-Deltap rocedure described in
110,18, 1, I 1]. Details of our variant arc given in appendix A,

Typically one lcai ning rate ¢ is used for all the parameters of the classifier, and gradient ascent/descent procecds
according to (1) in appendix A. References[ 10,1 8, 1, 1] describe why this can be sub-optimal and propose that each
parameterhave its own learning rate. Hachrate is increased when the current parameterupdate and an exponential average
of previous updates are of the same sign; when the current and average of previous updates have different signs  an
indication of oscillation in the scarch algorithim duc 1o an excessive learning rate  the learning rate is reduced. The




procedure leads 10 fastet convergence of the learning algorithm’s scarch for optimal parameters, but learning rates tend to
oscillate, duc to the first order autoregressive nature of the learning rate control * *filter””.

we change the control filler's characteristic so thatit uses a more stable moving average paradigm thatoperates on both
shortand long time scales (again, scc appendix A). Theresulting learning rates respond quickly to changes inthe objective
function’s local topology on parameter space, but they do not oscillate.

3.2,2 Sc heduled reduction of learning confidence

When differential learning is conducted, the CEM confidence parameter plays animportant role in determining the fevel
of discriminative detail that canbelearned fromthe feature vectors compr i sing the [raining, sample. Whenthe synthetic CHFM
confidence parameter is high, the objective function is a very weak {ncarly linear) approximationto a correct classification
counting function. As confidence is reduced, the objective function becomes a better approximation to a step function that
counts correct classifications. By maximizing this objective function, we maximize the number of correct classifications
the classifier makes on the training sample. The lower the confidence, the more likely the classifier will be able to learn all
of the training examples.

A rigorous theoretical motivation for the synthetic CHM objective function’s confidence paramceler is given in [4,
s, 2 & 71. Simply put, easy examples, which lic nearthe modes of the feature vector’s class-conditional probability
density functions (pdfs), can be learned with high confidence (i.c., without atlention to detail), but hard examples , which
lic ncar the tails of the feature vector’s class-conditional pdfs — near the ¢class boundar ics  must be lecarned with low
confidence (i.e., withincreased attention to detail). As aresult, there is a strong theoretical motivation for learning with
initially high confidence, gradually reducing confidence as lea | ning prog resses: the classifier learns the easy training
examples first, andthenlearnsthe hard oncs (see |4, ch. 7]). Figure 4 (top) shows controls that allow the human operator to
sclectthis kind of finear reduction schedule for the CEHM confidence parameter.

Onthe positive side, this scheduled reduction of Iearning confidence has a statistically significant effectonthe classifier’s
ahility (o learn (and subscquently classifyy hard examples. on the negative side, the human oi>ci-ale] mustspecify the rate of
and iterative bounds on the reduction. This inevitably induces an ad-hoc element: learning with too little con fidence gives
even classifiers withlow complexity the functional capacity to leariy details that are not representative. As a result, we arc
currently working on a truly-autonomaus, decision-directed procedure for placing lower bounds on the level of conlidence
with which a given training sample should be lear tied,

3.2.3 Automatic termination oflearning

Tetminationis generally viewed as animportantissuc i connectionistlearning, anunhappy consequence of incfficient,
probabilistically- generated classifiers. These classifiers often require excessive functional complexity in order to learn the
training sample: the added complexity reduces discriminant bias, but the reduced bias is more than offset by anincrease
in discriminant variance (scc [4, ch’s. 3-4] and |5]). As a result, the classifiers generalize poorly.  Through empirical
observation, numerous authors have found that carly termination of (tic learning procedure limits the increasc in discriminant
variance, so the classifiers gencralize better. Butthe scheme tequires that the human operator decide when to terminate the
learning without offering any ohjective measure of when to terminate.,

Since differential learning is asymptotically efficientand sinceitrequires the minimum functional complexity necessary
1o learn the training sample (see [4, ¢h. 3] and [6]Tor formal proofs), learning can proceed as long as the synthetic CI'M
objective function’s gradient is non-zero. As a result, we employ a simple scheme for automatic termination of learning (sce
figure 4, middle). we simply have the Ic:it-sing algorithm halt afteralarge consecutive number of iterations for which the
the training sample ercor rate is zero, or afteta fixed number of learming iterations have transpired. By setting both numbers
to a conservatively high number, we ensure that learning proceedsuntil (here is nothing more to learn, so to speak.




Figure 4: Controls for automated Iearning. From top to bottom: scheduled reduction of learning confidence; automated
multi-trial learning; automated OBD (differential and probabilistic).
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Figure 5: The empirical error rates (raining sample in gray and (estsample in black) for the 650- parameler logistic linear
classifier asitlearnsthebenchmark training sample differentially. The classifier's empirical test sample error rate is 1.3
(+ 1. 1/~0.9)% after 160 learning epochs

3.3 OCR illustration of automated learning

Figure 5 shows both the DB | benchmark training sample (gray) and test sample (black) empirical error rates as
differential learning progresses through approximately 160 learning epochs, using the automated procedures described
above, These plots are commonly known as learning cutves. A logistic lincar classifier (e.g., scc [5, pg.90)) is gencrated
differentially; learning confidence is reduced from a value of ~ (LS atepochzeroto ~ 0.35 beyond epoch 100; Iearning
proceeds 1o 160 epochs, or 50 consecutive epochs for which the training sample error rale is zero; there is no weight decay;
the weight smoothing coefficient is ¢ 22 0.13 . The objective function’s valueis plotted as a light gray background in the
figure. Ninc[y-five percentconfidence intervals on the error rates arce plotled at periodic intervals. I'rom these curves, one
can scc thatthe training sample crror rate is representative of the test sample error rate up to nincly differential learning
cpochs. Beyond this point the empiricaltraining sample crror rate is significantly lower thanthe test sample error rate.

‘There are fowrscatler plots on reduced discriminator output space in figure 6. in cach plot, the final output slate of
the classifier for each example in the DB 1 database is shown as a point among the scatler. 'TTaining examples arc shown
as Hght-g ray dots, and test examples arc shown as dark gray tiangles. "The fou plots shown correspond to fear points
(cpochs)alongthe learning curvein figure 5: epochs 15,30, 50, and 160. The value of the classifier outpul corresponding
to the correct classification of an example is the abscissa (we denotethis © ‘correct’” classifier output by y;). The value
of the largest classifier output corresponding to an incorrect classification of the example is the ordinate. (we denote this
largest® ‘incorrect’” classifier output by ). The reduced discriminant boundary is the line thatseparates the half of this
two-dimensional space that corresponds (0 a correct classification (i.e., ¥r> V7 ) fromthe half that yepresents an incorrect
classi fication (i.e., v, <3¥;).

At 15 ¢pochs all the outputstates arc clustered such thatabout15% of all examples arc misclassificd; at 30 epochs the
crror rate is approximately 7%; al 50 epochs it's 2.5% for the training sampleand 4.5% for the testsample; at 160 epochs all
the training examples are correctly classificd and 1.3% of the test examples arc misclassificd. Contours of constant CEM are
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shown as lines parallel (o the reduced discriminantboundary on cach of the four plots. Note that all the training examples lic
parallel to the CI'M = 0.90 contour at the end of eaining (epoch 1 60), as do most of the test examples. The remaining test
examples ones that are hard for the classifierto rec ognize  frill close to the reduced discriminant boundary. Owing to
the monotonic nature of the CEM objective function, these examples also lic parallelto the reduced discriminant boundary,
and mostof them are on the correet side of the boundary. Fight test examples lic on the boundary itselfl Or onthe incorrect
side Of the boundary.

These scatter plots illustrate that the differentially -generated classifier generalizes well, since the output state for the
testsample is similar to the output slate Of the training sample. There is sufficient difference to account for a statistically
sipnificant difference between the training and testsampleerror rates though, a fact that is born-out by the learning curves
infigure 5 al epoch 160.

3.3.1 Autonomous differential QOBD

Figure 7 shows a full-screen display of Oar learning algorithmas it automatically eliminates parameters fromthe classifier
after the fully-parameterized learning just described terminates. The parameter elimination procedure is a differential variant
of the OBD algorithm |1 4; the variant is detailed in appendix B. The rati onale behind parameter elimination is as follows:
parameters that are not necessary for robust classification Of the feature vector constitute excessive functional complexity,
which canlead to poor generalization onthe test sample; therefore, remove these paramcters from the model.

Difterential OBD differs from the original because it uses the synthetic CEFM objective function instead of the MSE
objective function, so ii's linked with differential learning rather than probabilistic learning. Also, our implementation of
differential OBD is an automatic procedure; nn human oversight is required. Figure 4 (bottom) shows the constraints On
the autonomous differential OBIY procedure. The procedure begins al the termination Of fully-parameterized learning; at
each tilcration the 1 (10 in this case) lcast salient parameters (i.c., (hose 2 that contribute least to maximizing CEFM over
the training sample) are climinated Or ““masked’’; following the masking Of these parameters, the classifier learns for a
user-specifiecd number of epochs (1 0 in this case) oruntilthe valuc of the CEM objective function climbs back to within a
uscr-specifiedamount (0 in this case) of its value prim to the parameter masking, whichever is less;if, after this learning,
the training sample crrorrale has notrisen aboveits ptc-oil]) value, OBD continues. If the error rale has risen aboveits
pre-OBD value, the parameters lastmasked are restored and Only #/2 arc masked. The number Of masked parameters is
reduced in this manner until the iterative masking/re-learning procedure succeeds withoutinereasing the classifier’s training
sample errorrate above the pic.oil]) rate. When no more paraicters can be eliminated without increasing the training
sample error rate, differential OBI) terminates.

Figure 7 shows autonomous differential OBD inits carly slages. Parameters that have already been climinated and those
that arc about 1o be eliminated arc shown in the weight displays. A ranked listof parameter saliencies (sec appendix B)
identifies the parameters slated for masking (shaded in gray). Figure 8 shows the final set Of parameters after differential
OBD terminates. Forty percent Of (Ire 650 original parameters have been eliminated, leaving some Of the digit parameter
maps quilt sparse (e. g., thoscfor “0” and “ I' *). Despite this Jarge reduction in parameters, the training sample s still
classificd without error. A compatison of figure 9 and figure 6 (bottom left) shows that the reduced discriminator output
states before and after OBD are not appreciably different. This is also evident froma comparisonof figures 5 and 1(): The
testsample error rate hasinereased from 1..3% priorto OBD to 3.3% after OBD, not quite a statistically significant increasc.

Thoughnot statistically significant, theincreaseinthe testsample errorrate is a negalive outcome, since itrepresemnts a
decreascinthe classifier's ability to generalize well, 0111) after all is supposcdto improve generalization, not degrade il.
We attribute the degradation to the high degree 01 spatial correlation in the parameters of the classifier induced by weight
sioothing dining fully-parameterized learning. Eliminating parameters decorrelates the remaining parameters owing o
the way the smoothing winks. The decorrelation results in an unrepresentative information gain in the classifier that is
sulficientto increase the test sample crror rate. ‘Thus, weight elimination can have negative results in al least some cases
involving strong local correlations among the feature vector elements.
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Figure 7: A full-screen image of our learning algorithm pet'fol rllilly autonomous differentialOBD. The paramelters that have
been masked (i.c., climinated) are shown as black “X” S ona gray background; parameters currently selected for masking
are highlighted in the OBD ranked saliency list (gray highlight) and in the parameter (or “‘weight’”) displays (outlined in
white). The histogram of the classifi er’s parameters (1ight, middle of display) reveals that mosthave small values in a
narnowTange.

A classifier generated from a controllearning/OBID experiment in which all characteristics arcidenticalexcept for the
learning strategy (probabilistic learning via the Kullback-1.ciblerinformation distance is substituted for differential learning
via synthetic CIM) results in a post-OBD classifier with 315 masked parameters (49% of the original 650); the classifier’s
training sample crror rate is 5.3%, andits test sample errorrateis 13.2%. ‘T’bus, differential OB is more efficient than
probabilistic OBD for the same reasons that differential learning, is generally more efficient than probabilistic learning,.

4 AUTOMATED CLASSIFIER EVAI .UATION

Our reduced discriminator output state scatter plots arc directly related to classical receiver operator characteristic
(ROC) curvesfor the classifier. *1'0 sec how and wily, weretut n to the final state Of the classifier at the termination of
fully-paramet crized learning (epoch 160y, igure H shows this plot with the synthetic CHM objective function superimposed
perpendicular tothe reduced discriminantboundary. This perpendiculat axis is known as the discriminant continuum, the
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I“igure 1 (): The training (gray) andtest (black) sample error
rate histories during differential OB, Note that the test
sample crrot rate increase is not statistically significant
(cf figure 5), even though 40% of the classifier’'s 650
parameters bave been masked (i.e., eliminated).
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THE
“DISCRIMINANT DIFFERENTIAL”

5 IS SIMPLY THE DIFFERENCE
BETWEEN THE CORRECT

OUT PUT YT AND THE LARGEST

OTHER OUT PUT Y1

s

Figure 1 1 : The reduced discriminator output state of figure 6 (cpoch 16[)) with the synthetic CEM objective function
super imposed to illustrate its relationship (o the oulput state and the resulting discriminant differential & = y, -
Negative differentials correspondto classification errors; positive ones correspond to correct classifications. The contours
of constant CEM arc parallel to the reduced discriminantboundary 4 necessary condition for efficient learning (sce |4,
ch. 5)).
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Figure 12: scnsilivily/specificity analyses and the receiver operator characteristic (ROC) carve for the digit “8” of the
benchmark split. These displays are generated automatically.

domain of the discrimimml(lif_['(’rmxrium,which is simply the. diffeience between the classifier output {(y+ ) representing the
correct class and the output (37, ) representing largest ofhier (incorrect) class. When d is positive, the example is correctly
classified; when it isn't the example is misclassified. The value of CEM increases with the value of &, which is why
maximizing CEM maximizes the number of correct class ifications, Decreasing the confidence parameter ¢ increases the
steepness of the CI'M function, making it a betterapproximationto a step functionthatsimply counts correct classifications,
1111s,cven **hard” examples with smallpositive values Of & generate the maximum value of CEM.

Altesing the detection threshold for a class is accomplished simply by altering the value of & above which an example
is recognized as a memberof the class. '] has, ROCcut ves arc easily generated by changing the position of the reduced
disctiminant boundary along the discriminant continuum. When the boundary is moved towards very negative values Of &
fora given class, more and more examples are recognized as members Of the class: the true positive detection rate for the
class increases, but so does the false positive rate. 1 ikewise, as the reduced discriminant boundary is m oved towards very
positive values 01 & for a given class, fewer and fewer examplesare recognized as members Of the class: the true positive
detectionrate forthe class decreases, as docs the false positiverate. This is a graphical description Of the computations
our algorithm performs to generate ROC carves automatically. Figure | 2 shows the ROC curve for the digit “8” at the
cad Or fully-parameterized learning, butprior 1001111. The carve corresponds to the reduced discriminator output state in
figure 1 1. The classifier’s sensitivity and specificity for detecting *‘8”’s is shownto the left of the ROC cur ve: the numbers
shown have 95% confidence bounds and correspond tothe default discriminant boundary al & = 0.

ROC curves allowusto characterize the trade-Ofl between the classificr’s sensitivity and specificity on a class-by-class
basis, and canbe used in conjunction with the reduced discriminant continuum and a refated graphical display inorder to
set 1cjection thresholds  non-negative values OfF O below which examples will not be definitively classified, but will
be rejected as toouncertain to be recognized with reasonable confidence. Consider the test example shown in figure 13:
itis a “3” in thebenchmark DB Isplit, butthe class fier recognizesitas a “5”. Figure 14 shows the details OF this
misclassification in the context Of all other class ifications (both training and test samples for the purpose of illustration).
The top display shows what the histogram Of & wouldlook like for all the examples, giventhe classifier's parameterization
al epoch 160, assuming that the correct class ificationis always * 5", Under this ‘always rccognize 5 hypothesis, the vast
majority Or examples gencrate negative values OF d (thatis, the classifier outputcorresponding to “5” is usually smaller




Figurc13: A “3" in the benchmark test sample that has beenincorrectly classified as a “5”.

than some other output), so the hypothesis is rejected. Only aboutone tenth of the examples generate positive values Of
&, for which the “5” hypothesis is accepted. The histogram of & values shows that the distributions of acceptances and
rejections peak relatively far from the decision threshold.

The whiskerplots in the lower half of the display show the empitical probability (with 95% confidence bounds) that the
“ 5 hypothesis is valid for a givenvalue Of ¢ . They are superimposed ona cumulative histogram that corresponds 1o the
pdf histogramin the upper half of the display. Since fcw examples gencrate small positive and negative values of 8, the
probability of a “5” hypothesis fTuctuates in the vicinity Of the discriminant boundary atd = (). Morcover, the confidence
bounds on the probability of a “5” hypothesis for small & arc large  again, because so fow examples generate these
small values of & . As a result, we cannot have reasonable confidenceina 57 classification with a value Of & that falls
inside lhe “‘low confidence’” region enclosed by the dashed box. That is, examples that gencrate a valuc of 4.5 .18 cannot
be classified as ““5°’s with confidence. The value of 6 forthe “3” in figure 13 is indicated by the dark-highlighted vertical
bar, which is well inside the ‘‘low confidence’” region. ‘Tbus, the erroncous “ 5" classification should be rejected. We are
currently developing a statistically sound approach to automatically selling the rejection thresholds for each class based On
the metrics illustrated in figure 14. At present it appears that the threshold should be set at the value of d below which the
lower 95% conlidence bound on the probability of a correct ¢lassification is less than 50%.

5 CONCI.USION

Wc have described a learning algorithm that gencrates linear, multi-layer perceptron (Ml .P), and radial basis function
(RBY) neural network classifiers with little human intervention. The algorithm adjusts its learning rates automatically, using
a modified Delta- Bar-Delta procedure. The initial learning phase terminates when the training sample is classified without
crior or when the number Of Iearning iterations exceeds a specified limit, whichever occwrs first. The learning procedure
can theninitiate an automatic OB parameter climination procedure, which iteratively reduces  classifier complexity. The
procedure runs avtomatically, terminating in cither a scheduled or a decision-directed manner. When differential lcarning
is conducted, learning confidence is automatically reduced according to a pre-set schedule. After learning, the algorithm
generates classifier sensitivity/s pecificity estimates, ROC curves, and learning carves. Additional antomatically -generated
graphical displays allow the user to analyzethe classifier outputstate over the course Of learning.

When paired with differential learning, thealgorithm gencrates classifiers that arc consistently good approximations
to the Bayes-optimal classifier, as long as the initial choice 01 model is sufficiently complex and regularization is not
excessive. At present, the model and level of regularization are chosen by the human operator prionto learning. Oar current
rescarch is aimed at awtomating these choices as well as the post-lear ning evaluation described in the previous section,
using an iterative procedure by which the learning algorithm gencrates and evaluates increasingly complex models of the
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Figure 14: A detailed view of the crroncous classification of the digit « 3
asa “5”. This display characterizesthe “5” classification hypothesis in the context of all the test and training sample
examples (see the text for explanation). Dark highlighting indicates where the classifier’s output “di fferential””  § for the
*example falls along the “discriminant continuum™ ¢ ¢ the domain of ).

in figurel2:

EXAMPLES NOT
CLASSIFIED AS 5 Accept
T J Hypothesis
0066 |
7 EXAMPLES
_g CLASSIFIED AS 5
3
£40.033 _
ew i
=N [
?j . LASSIFICATIONS
T 00 L ] WITH Os IN THIS
-0.825 -0.1$7 REGION OF THE
6 . DISCRIMINANT
. | CONTINUUM CANNOT
o . BE MADE WITH HIGH
- 1.0. e CONFIDENCE
8 | vile [T T S L B e
o) i I
@) | 1] .
405 1 L 0.5
'L';)‘ -1 \ L
g ‘ i THE ERRONEOUS
© I . l TEST EXAMPLE'S
53 0.0 Jesddlisssossnniiisibonian]
e O Jos Sobbobbsbbintons N I 1.0.0 SMALL
<, 0825 -0.1$7 , 0.511 DIFFERENTIAL O
8| . INDICATES THAT
<—1 DISCRIMINANT CONTINUUM, ASSUMING “5” |—3» IT IS CLOSE TO
T ™ ' THE DECISION
Differential ( &): ! 0.026075 <€ — BOUNDARY,
Differential’s Percentile : | 90.4 % WHERE THE
x ) E CLASSIFICATION
) P (correct hypothesis | 8):: 66.7 (+33.3/-48.5)% IS UNCERTAIN
P (incorrect hypothesis | 8) 33,3 (+48.5/.33,3)% T
Dale / Time: Sun Jan 23 13:04:57 1994

the digit is incorrectly classified

10



training Salnple. Such a strategy is consistent with the minimum -complexity requirements of differential learning. Our goal
is athecoretically- defensible, truly autonomous differential Iearning machine.
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APPENDICES

A MODIFIED DEI.TA-BAR-DELTA PROCEDURE

"The canonical backpropagation cquation| 16, 17] describes how the classificr’s parameter vector @ atiterationn + 1
is altered via a simple steepest ascent/descentalgorithm

i, clum term
—_—
Oln+ 1] = 0n] -1 e Vg (@[n]) 4 a . A8l ~ ]1] , (1)

A8

whiere the change or “deflection’ in the parameter vector at ime 1 is given by A@[n] . Thie sign of the learning rate
£ depends on whether the objective function used to guide the scarch for optimal parameters is to be maximized (1) Or
minimized (). Typically £ is fixed.

The Delta-Bar-I>elta algorithm | 10, 1 X, 1, 11 ]associates a different learning rate with each element of the parameter
veetor, rather than using one rate for all the elements; fut thermore, it modulates the value of cach learning rate according to
the rules described in [ 10, (4)]: rates arc increased linearly and decicased exponentially based on whether o1 not the current
weight deflection and an exponential average Of pastdeflections are Of the same sign. The scheme is effective, but can lead
to oscillating learning rates, owing to its use of a first-order infinite impulse response (1IR) filter to compute the exponcntial
average Of pastdeflections.

we maodily the 1 delta-Bar-Delta control filter in three ways, in order to improve its stability:
1. lcarning rates arc. increased and decrcased exponentially.

‘Z. increasesinlearning rates arc made onalong lime scale.

3.decreases in learning rates arc made on bothshortandlong time scale%.

Ouwr control filler computes long and short term averages of its input, which al iteration n is a sign flip indicator siln}
a binar y number that indicates whether or not the sign of the patameter deflection at time n is opposite to the sign of the
deflection al time n - 1 (w ¢ use the notation 0; [#] 1o denote the ith element of the parameter vector € at iteration
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likewise, weuse the notation ¢ ,[n] to denote the fith clement of the associated learning rale vector ¢ at iteration n; the
notation A()i[”] denotes the deflection Of the paramcter vector’s ith clement atiteration n ).

The learning rates arc allinitialized to the same value; as teat ning begins, each rate is (hen auwtomatically adjusted by the
control filter according to the following rules:

A1 4
9], ): sifn-j] > 0
i 0
1119
9ein], Cosln- > s
ety ,>’6 2
1519
F.1¢n], >: sin-4) = 0
J 0
L =iln)., otherwise

Lachtime e;is increased or decreased, the co ntrol filter 's input (i, c., its history of sign flips)is flushed,so that g;is not
dcct-case.d foratleastanother k = 5 iterations, not is it increased for at least another 7 = 20 iterations. The resulting
modificd Delta-Bar-1Delta procedure regulates learning rates quickly without making them  Oscillate.

B DIFFERENTIAL OBD

Optimal Brain Damage (OBD) | 14] is a second-order parameter elimination procedure; it eliminates parameters that
have low “saliency” (i.e., thoscthat have little or no eftect on the objective function used to search for the classifier’s
oplimal parameterization).  The procedure assumes a diagonal hessian matrix for the second-order derivatives Of the
objective function with respect to the parameter vector. The Optimal Brain Surgeon (OBS) [91 algorithm assumcs a full
diagonal hessian matrix in order to identify the notl-salient paramcters more effectively. Bothalgorithing assume that a
mean squared error (MSH) objecti ve function is being minimized during Iearning.

We list the equations by which 0111)/01{S can be imiplemented for the arbitrary objective function below because MSE
provably leads to inefficien t learning when the classifictis an improper parametric model o f the data 4, ch’s.3-4]. Given
an improper model, the MSE-based 0111)/011S algorithms will not remove the least salient parameters (they will merely
climinate those parameter s that contribute least to the classifict 's MSE for the training sample). By pairing O B1Y/ORS with
a synthetic forin of the classification figure o f merit (C FM) objective function[3], elimination of the least salient parameters
(for classification purposes) is guaranteed. We refer to OBD withCEM as differential OBD.

Wec use the notation® (S”|8)to denote the value of the arbitrary objective function &, given the training sample
S" and the classifier with parameterization @ . Specific expressions for the first- and sccond-order derivatives Of $ are
left to the reader; those for the original logistic form of CHFM are given in [7]; those for synthetic CEM are given in |4,
appendix DL I we know the valuc of @, given the parameter vector 87, we can express its value, given the parameter
vector @, using the following Taylor series expansion:

BS")0) = (S |67) 4 (0" - 07) Vg (&(S"] 67))
3
11 - 07)7 L1 (s 07) (0" - 67) 1 onfe -6
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Figure 15: A diagrammatic view of two source/sink node pairs ina ncural network; this view illustrates the notational
convention we use in our description of the differential OBD algorithm’s hessian computations. None of the four nodes is
necessarily in the same layeras any other,

The notation 2’ denotes the transpose of vector 2, V() (@(S"|8” ) denotes the gradient of @ with respectto the

parameter vector f), evaluatedat @™, and 110 (9(S" |67 )) denotes the hessian of @ withrespectio the parameter vector
O, cvaluated al 87

H @ is optimized when the classifier’s parameter vector is given by @° , then the fust-order term in (3) will be
rero. Assuming that third and higher order terms arc negligible, (3) can be rearranged to form the following approximate
expression for the change in the objective function’s value when 0’ is changedto ' :

oo N . .
DS 0') - (S |0 )5 (0 -0 ) Hy (@(8"167)) (6" - 0°) )

Ad?

71

The equations below can be used with the chain rule to compute cach element Of the hessianin (4), Wc use @* as
short-hand for (8" | @) . Figure 15 illustrates the notational conventions we use to label the nodes and parameters Of our

PR
neural network classifier: source nodes feed sink nodes via a connecting parameter o1 “weight””. Thus, -5 ‘](,m" denotes the
'

Jhlth element of the hessian | ]9((]'(8”|0’ ) in (L 5). i follows thatthe diagonal clements of the hessian arc given by

&9 >,

¢ . LTy ©)
It 2 oy 0 . ’
()()j,. (),x]? !
where
I A B (a_yj)? + Py 0P ©)
D - - - , )
Oxj? ()_yj? Ox; (').x‘j? Oyj



and

- A M7 g+

P ~ 5 e

Ty : Oy« -, (7)
y? ?4] Mo

Note that A is the fan-out of the source node y;

If the full m x mr element hessian is being used (011 S), it is more cfficient to compute the vector transpose H1 in
(4) directly, using the procedure described by Pearlmutier [ 1 5] "The resulting computation is efficient, €2 [m] rather than
@ [1117]
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